Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Trends Microbiol ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38670883

RESUMO

The crucial role of rhizosphere microbes in plant growth and their resilience to environmental stresses underscores the intricate communication between microbes and plants. Plants are equipped with a diverse set of signaling molecules that facilitate communication across different biological kingdoms, although our comprehension of these mechanisms is still evolving. Small peptides produced by plants (SPPs) and microbes (SPMs) play a pivotal role in intracellular signaling and are essential in orchestrating various plant development stages. In this review, we posit that SPPs and SPMs serve as crucial signaling agents for the bidirectional cross-kingdom communication between plants and rhizosphere microbes. We explore several potential mechanistic pathways through which this communication occurs. Additionally, we propose that leveraging small peptides, inspired by plant-rhizosphere microbe interactions, represents an innovative approach in the field of holobiont engineering.

2.
J Integr Plant Biol ; 65(10): 2368-2379, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37655952

RESUMO

Soybean (Glycine max) produces seeds that are rich in unsaturated fatty acids and is an important oilseed crop worldwide. Seed oil content and composition largely determine the economic value of soybean. Due to natural genetic variation, seed oil content varies substantially across soybean cultivars. Although much progress has been made in elucidating the genetic trajectory underlying fatty acid metabolism and oil biosynthesis in plants, the causal genes for many quantitative trait loci (QTLs) regulating seed oil content in soybean remain to be revealed. In this study, we identified GmFATA1B as the gene underlying a QTL that regulates seed oil content and composition, as well as seed size in soybean. Nine extra amino acids in the conserved region of GmFATA1B impair its function as a fatty acyl-acyl carrier protein thioesterase, thereby affecting seed oil content and composition. Heterogeneously overexpressing the functional GmFATA1B allele in Arabidopsis thaliana increased both the total oil content and the oleic acid and linoleic acid contents of seeds. Our findings uncover a previously unknown locus underlying variation in seed oil content in soybean and lay the foundation for improving seed oil content and composition in soybean.


Assuntos
Glycine max , Proteínas de Plantas , Glycine max/genética , Glycine max/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas/genética , Sementes/genética , Sementes/metabolismo , Óleos de Plantas/metabolismo
3.
ISME Commun ; 3(1): 71, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37433864

RESUMO

Waterlogging in soil can limit the availability of nitrogen to plants by promoting denitrification and reducing nitrogen fixation and nitrification. The root-associated microorganisms that determine nitrogen availability at the root-soil interface can be influenced by plant genotype and soil type, which potentially alters the nitrogen uptake capacity of plants in waterlogged soils. In a greenhouse experiment, two soybean genotypes with contrasting capacities to resist waterlogging stress were grown in Udic Argosol and Haplic Alisol soils with and without waterlogging, respectively. Using isotope labeling, high-throughput amplicon sequencing and qPCR, we show that waterlogging negatively affects soybean yield and nitrogen absorption from fertilizer, atmosphere, and soil. These effects were soil-dependent and more pronounced in the waterlogging-sensitive than tolerant genotype. The tolerant genotype harbored more ammonia oxidizers and less nitrous oxide reducers. Anaerobic, nitrogen-fixing, denitrifying and iron-reducing bacteria such as Geobacter/Geomonas, Sphingomonas, Candidatus Koribacter, and Desulfosporosinus were proportionally enriched in association with the tolerant genotype under waterlogging. These changes in the rhizosphere microbiome might ultimately help the plant to improve nitrogen uptake under waterlogged, anoxic conditions. This research contributes to a better understanding of the adaptability of soybean genotypes under waterlogging stress and might help to formulate fertilization strategies that improve nitrogen use efficiency of soybean. Schematic representation of the effects of waterlogging on nitrogen uptake and rhizosphere microbiota in dependence of soil type and soybean genotype.

4.
J Hazard Mater ; 455: 131621, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37187122

RESUMO

Plant resistance genes could affect rhizosphere microbiota, which in turn enhanced plant resistance to stresses. Our previous study found that overexpression of the GsMYB10 gene led to enhanced tolerance of soybean plants to aluminum (Al) toxicity. However, whether GsMYB10 gene could regulate rhizosphere microbiota to mitigate Al toxicity remains unclear. Here, we analyzed the rhizosphere microbiomes of HC6 soybean (WT) and transgenic soybean (trans-GsMYB10) at three Al concentrations, and constructed three different synthetic microbial communities (SynComs), including bacterial, fungal and cross-kingdom (bacteria and fungi) SynComs to verify their role in improving Al tolerance of soybean. Trans-GsMYB10 shaped the rhizosphere microbial communities and harbored some beneficial microbes, such as Bacillus, Aspergillus and Talaromyces under Al toxicity. Fungal and cross-kingdom SynComs showed a more effective role than the bacterial one in resistance to Al stress, and these SynComs helped soybean resist Al toxicity via affecting some functional genes that involved cell wall biosynthesis and organic acid transport etc. Overall, this study reveals the mechanism of soybean functional genes regulating the synergistic resistance of rhizosphere microbiota and plants to Al toxicity, and also highlights the possibility of focusing on the rhizobial microbial community as a potential molecular breeding target to produce crops.


Assuntos
Glycine max , Microbiota , Glycine max/genética , Glycine max/microbiologia , Alumínio/toxicidade , Rizosfera , Bactérias/genética , Microbiota/fisiologia , Microbiologia do Solo , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Solo
5.
Int J Mol Sci ; 24(7)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37047599

RESUMO

Eleusine indica (goosegrass) is a problematic weed worldwide known for its multi-herbicide tolerance/resistance biotype. However, a genetic transformation method in goosegrass has not been successfully established, making a bottleneck for functional genomics studies in this species. Here, we report a successful Agrobacterium-mediated transformation method for goosegrass. Firstly, we optimized conditions for breaking seed dormancy and increasing seed germination rate. A higher callus induction rate from germinated seeds was obtained in N6 than in MS or B5 medium. Then the optimal transformation efficiency of the gus reporter gene was obtained by infection with Agrobacterium tumefaciens culture of OD600 = 0.5 for 30 min, followed by 3 days of co-cultivation with 300 µmol/L acetosyringone. Concentrations of 20 mg L-1 kanamycin and 100 mg L-1 timentin were used to select the transformed calli. The optimal rate of regeneration of the calli was generated by using 0.50 mg L-1 6-BA and 0.50 mg L-1 KT in the culture medium. Then, using this transformation method, we overexpressed the paraquat-resistant EiKCS gene into a paraquat-susceptible goosegrass biotype MZ04 and confirmed the stable inheritance of paraquat-resistance in the transgenic goosegrass lines. This approach may provide a potential mechanism for the evolution of paraquat-resistant goosegrass and a promising gene for the manipulation of paraquat-resistance plants. This study is novel and valuable in future research using similar methods for herbicide resistance.


Assuntos
Eleusine , Paraquat , Paraquat/farmacologia , Eleusine/genética , Agrobacterium tumefaciens/genética , Resistência a Herbicidas/genética , Transformação Genética , Plantas Geneticamente Modificadas/genética
6.
Front Plant Sci ; 14: 1125245, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035040

RESUMO

The ethylene response factor (ERF) transcription factors, which is one of the largest transcription factor families in plants, are involved in biological and abiotic stress response and play an important role in plant growth and development. In this study, the GmABR1 gene from the soybean inbred line Zhonghuang24 (ZH24)×Huaxia 3 (HX3) was investigated its aluminum (Al) tolerance. GmABR1 protein has a conserved domain AP2, which is located in the nucleus and has transcriptional activation ability. The results of real-time quantitative PCR (qRT-PCR) showed that the GmABR1 gene presented a constitutive expression pattern rich in the root tip, stem and leaf tissues of HX3. After Al stress, the GmABR1 transcript was significantly increased in the roots. The transcripts of GmABR1 in the roots of HX3 treated with 50 µM AlCl3 was 51 times than that of the control. The GmABR1 was spatiotemporally specific with the highest expression levels when Al concentration was 50 µM, which was about 36 times than that of the control. The results of hematoxylin staining showed that the root tips of GmABR1-overexpression lines were stained the lightest, followed by the control, and the root tips of GmABR1 RNAi lines were stained the darkest. The concentrations of Al3+ in root tips were 207.40 µg/g, 147.74 µg/g and 330.65 µg/g in wild type (WT), overexpressed lines and RNAi lines, respectively. When AlCl3 (pH4.5) concentration was 100 µM, all the roots of Arabidopsis were significantly inhibited. The taproot elongation of WT, GmABR1 transgenic lines was 69.6%, 85.6%, respectively. When treated with Al, the content of malondialdehyde (MDA) in leaves of WT increased to 3.03 µg/g, while that of transgenic Arabidopsis increased from 1.66-2.21 µg/g, which was lower than that of WT. Under the Al stress, the Al stress responsive genes such as AtALMT1 and AtMATE, and the genes related to ABA pathway such as AtABI1, AtRD22 and AtRD29A were up-regulated. The results indicated that GmABR1 may jointly regulate plant resistance to Al stress through genes related to Al stress response and ABA response pathways.

7.
Front Plant Sci ; 14: 1133892, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968408

RESUMO

Introduction: Cadmium (Cd) stress is a significant threat to soybean production, and enhancing Cd tolerance in soybean is the focus of this study. The WRKY transcription factor family is associated with abiotic stress response processes. In this study, we aimed to identify a Cd-responsive WRKY transcription factor GmWRKY172 from soybean and investigate its potential for enhancing Cd tolerance in soybean. Methods: The characterization of GmWRKY172 involved analyzing its expression pattern, subcellular localization, and transcriptional activity. To assess the impact of GmWRKY172, transgenic Arabidopsis and soybean plants were generated and examined for their tolerance to Cd and Cd content in shoots. Additionally, transgenic soybean plants were evaluated for Cd translocation and various physiological stress indicators. RNA sequencing was performed to identify the potential biological pathways regulated by GmWRKY172. Results: GmWRKY172 was significantly upregulated by Cd stress, highly expressed in leaves and flowers, and localized to the nucleus with transcriptional activity. Transgenic plants overexpressing GmWRKY172 showed enhanced Cd tolerance and reduced Cd content in shoots compared to WT. Lower Cd translocation from roots to shoots and seeds was also observed in transgenic soybean. Under Cd stress, transgenic soybean accumulated less malondialdehyde (MDA) and hydrogen peroxide (H2O2) than WT plants, with higher flavonoid and lignin contents, and peroxidase (POD) activity. RNA sequencing analysis revealed that many stress-related pathways were regulated by GmWRKY172 in transgenic soybean, including flavonoid biosynthesis, cell wall synthesis, and peroxidase activity. Discussion: Our findings demonstrated that GmWRKY172 enhances Cd tolerance and reduces seed Cd accumulation in soybean by regulating multiple stress-related pathways, and could be a promising candidate for breeding Cd-tolerant and low Cd soybean varieties.

8.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36982621

RESUMO

Salt stress has a detrimental impact on crop yield, quality, and profitability. The tau-like glutathione transferases (GSTs) represent a significant group of enzymes that play a crucial role in plant stress responses, including salt stress. In this study, we identified a tau-like glutathione transferase family gene from soybean named GmGSTU23. Expression pattern analysis revealed that GmGSTU23 was predominantly expressed in the roots and flowers and exhibited a concentration-time-specific pattern in response to salt stress. Transgenic lines were generated and subjected to phenotypic characterization under salt stress. The transgenic lines exhibited increased salt tolerance, root length, and fresh weight compared to the wild type. Antioxidant enzyme activity and malondialdehyde content were subsequently measured, and the data revealed no significant differences between the transgenic and wild-type plants in the absence of salt stress. However, under salt stress, the wild-type plants exhibited significantly lower activities of SOD, POD, and CAT than the three transgenic lines, whereas the activity of APX and the content of MDA showed the opposite trend. We identified changes in glutathione pools and associated enzyme activity to gain insights into the underlying mechanisms of the observed phenotypic differences. Notably, under salt stress, the transgenic Arabidopsis's GST activity, GR activity, and GSH content were significantly higher than those of the wild type. In summary, our findings suggest that GmGSTU23 mediates the scavenging of reactive oxygen species and glutathione by enhancing the activity of glutathione transferase, thereby conferring enhanced tolerance to salt stress in plants.


Assuntos
Glycine max , Tolerância ao Sal , Tolerância ao Sal/genética , Glycine max/fisiologia , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Antioxidantes/metabolismo , Glutationa/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Regulação da Expressão Gênica de Plantas
9.
New Phytol ; 239(3): 905-919, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36740575

RESUMO

Soybean is a major crop that produces valuable seed oil and protein for global consumption. Seed oil and protein are regulated by complex quantitative trait loci (QTLs) and have undergone intensive selections during the domestication of soybean. It is essential to identify the major genetic components and understand their mechanism behind seed oil and protein in soybean. We report that MOTHER-OF-FT-AND-TFL1 (GmMFT) is the gene of a classical QTL that has been reported to regulate seed oil and protein content in many studies. Mutation of MFT decreased seeds oil content and weight in both Arabidopsis and soybean, whereas increased expression of GmMFT enhanced seeds oil content and weight. Haplotype analysis showed that GmMFT has undergone selection, which resulted in the extended haplotype homozygosity in the cultivated soybean and the enriching of the oil-favorable allele in modern soybean cultivars. This work unraveled the GmMFT-mediated mechanism regulating seed oil and protein content and seed weight, and revealed a previously unknown function of MFT that provides new insights into targeted soybean improvement and breeding.


Assuntos
Glycine max , Mães , Feminino , Humanos , Glycine max/genética , Glycine max/metabolismo , Melhoramento Vegetal , Óleos de Plantas/metabolismo , Sementes/genética
10.
J Agric Food Chem ; 71(1): 398-410, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36574335

RESUMO

Soybean is a major source of high-quality protein for humans and animals. The content of sulfur-containing amino acids (SAA) in soybean is insufficient, which has become the main factor limiting soybean nutrition. In this study, we used the high-density genetic maps derived from Guizao 1 and Brazil 13 to evaluate the quantitative trait loci of cysteine (Cys), methionine (Met), SAA, glycinin (7S), ß-conglycinin (11S), ratio of glycinin to ß-conglycinin (RGC), and protein content (PC). In genetic map linkage analysis, the major and stable 44 QTLs were detected, which shared nine bin intervals. Among them, the bin interval (bin157-bin160) on chromosome 5 was detected in multiple environments as a stable QTL, which was linked to 11S, 7S, RGC, and SSA. Based on the analysis of bioinformatics and RNA-sequencing data, 16 differentially expressed genes (DEGs) within these QTLs were selected as candidate genes. These results will help to elucidate the genetic mechanism of soybean SAA-related traits and provide the basis for the gene mining of sulfur-containing amino acids.


Assuntos
Glycine max , Locos de Características Quantitativas , Humanos , Glycine max/genética , Glycine max/metabolismo , Aminoácidos/metabolismo , Mapeamento Cromossômico/métodos , Fenótipo , Enxofre/metabolismo , Sementes/química
11.
Plant Biotechnol J ; 21(5): 902-917, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36271765

RESUMO

The importance of rhizomicrobiome in plant development, nutrition acquisition and stress tolerance is unquestionable. Relevant plant genes corresponding to the above functions also regulate rhizomicrobiome construction. Deciphering the molecular regulatory network of plant-microbe interactions could substantially contribute to improving crop yield and quality. Here, the plant gene-related nutrient uptake, biotic and abiotic stress resistance, which may influence the composition and function of microbial communities, are discussed in this review. In turn, the influence of microbes on the expression of functional plant genes, and thereby plant growth and immunity, is also reviewed. Moreover, we have specifically paid attention to techniques and methods used to link plant functional genes and rhizomicrobiome. Finally, we propose to further explore the molecular mechanisms and signalling pathways of microbe-host gene interactions, which could potentially be used for managing plant health in agricultural systems.


Assuntos
Microbiota , Microbiologia do Solo , Rizosfera , Plantas/genética , Agricultura , Microbiota/genética , Raízes de Plantas/genética
12.
Front Plant Sci ; 13: 833326, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958220

RESUMO

The WRKY transcription factors (TFs) are one of the largest families of TFs in plants and play multiple roles in plant growth and development and stress response. In this study, GmWRKY21 encoding a WRKY transcription factor was functionally characterized in Arabidopsis and soybean. The GmWRKY21 protein containing a highly conserved WRKY domain and a C2H2 zinc-finger structure is located in the nucleus and has the characteristics of transcriptional activation ability. The GmWRKY21 gene presented a constitutive expression pattern rich in the roots, leaves, and flowers of soybean with over 6-fold of relative expression levels and could be substantially induced by aluminum stress. As compared to the control, overexpression of GmWRKY21 in Arabidopsis increased the root growth of seedlings in transgenic lines under the AlCl3 concentrations of 25, 50, and 100 µM with higher proline and lower MDA accumulation. The results of quantitative real-time polymerase chain reaction (qRT-PCR) showed that the marker genes relative to aluminum stress including ALMT, ALS3, MATE, and STOP1 were induced in GmWRKY21 transgenic plants under AlCl3 treatment. The stress-related genes, such as KIN1, COR15A, COR15B, COR47, GLOS3, and RD29A, were also upregulated in GmWRKY21 transgenic Arabidopsis under aluminum stress. Similarly, stress-related genes, such as GmCOR47, GmDREB2A, GmMYB84, GmKIN1, GmGST1, and GmLEA, were upregulated in hair roots of GmWRKY21 transgenic plants. In summary, these results suggested that the GmWRKY21 transcription factor may promote the tolerance to aluminum stress mediated by the pathways regulating the expression of the acidic aluminum stress-responsive genes and abiotic stress-responsive genes.

14.
BMC Genomics ; 23(1): 529, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869448

RESUMO

BACKGROUND: MYB transcription factor (TF) is one of the largest families of TFs in plants and play essential roles in plant growth and development, and is involved in responses to biological and abiotic stress. However, there are few reports on GsMYB7 gene in soybean under aluminum acid stress, and its regulatory mechanism remains unclear. RESULTS: The GsMYB7 protein is localized in the nucleus and has transcriptional activation ability. Quantitative real-time PCR (qRT-PCR) results showed that GsMYB7 held a constitutive expression pattern rich in roots. When AlCl3 concentration was 25 µM, the total root surface area (SA) of GsMYB7 transgenic lines were 34.97% higher than that of wild-type Huachun 6 (HC6). While the accumulation of Al3+ in root tip of transgenic plants after aluminum treatment was 17.39% lower than that of wild-type. RNA-sequencing analysis indicated that over 1181 genes were regulated by GsMYB7 and aluminum stress. Among all the regulated genes, the expression levels of glutathione peroxidase, protein kinase, cytochrome and other genes in the transgenic lines were significantly higher than those in wild type by acidic aluminum stress. The bioinformatics and qRT-PCR results showed that 9 candidate genes were induced under the treatments of acidic aluminum stress which were indirectly and/or directly regulated by GsMYB7. After AlCl3 treatments, the transcripts of these genes in GsMYB7 transgenic seedlings were significantly higher than those of wide-type HC6. CONCLUSIONS: The results suggested that GsMYB7 may enhance soybean tolerance to acidic aluminum stress by regulating the downstream genes.


Assuntos
Arabidopsis , Fabaceae , Alumínio/toxicidade , Arabidopsis/genética , Fabaceae/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Glycine max/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Ecotoxicol Environ Saf ; 241: 113766, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35709671

RESUMO

Cadmium (Cd) is a widely distributed heavy metal that is toxic to plants and humans. Although silicon (Si) has been reported to reduce Cd accumulation and toxicity in plants, evidence on the functions of Si and its mechanisms in the possible alleviation of soybean are limited. Therefore, a controlled experiment was conducted to investigate the impacts and mechanisms of Si on Cd retention in soybean. Here, we determined the growth index, Cd distribution, and antioxidant activity systems of Si, as well as expression levels of differentially expressed genes (DEGs) in Si under Cd stress, and conducted RNA-seq analysis. We not only found that Si can significantly promote soybean plant growth, increase plant antioxidant activities, and reduce the Cd translocation factor, but also revealed that a total of 636 DEGs were shared between CK and Cd, CK and Cd + Si, and Cd and Cd + Si. Moreover, several genes were significantly enriched in antioxidant systems and Cd distribution and transport systems. Therefore, the expression status of Si-mediated Cd stress response genes is likely involved in improving oxidative stress and changing Cd uptake and transport, as well as improving plant growth that contributes to Si alleviating Cd toxicity in plants. Moreover, numerous potential target genes were identified for the engineering of Cd-tolerant cultivars in soybean breeding programs.


Assuntos
Cádmio , Glycine max , Melhoramento Vegetal , Silício , Antioxidantes/metabolismo , Cádmio/metabolismo , Cádmio/toxicidade , Humanos , Melhoramento Vegetal/métodos , Silício/metabolismo , Poluentes do Solo/toxicidade , Glycine max/genética , Glycine max/metabolismo
16.
Plant Physiol Biochem ; 185: 91-100, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35667318

RESUMO

Nowadays, there are many critical concerns in the agricultural sector, including reduced productivity of plants due to various environmental factors. Hence, a continuous innovation of existing technologies is necessary. Among the available technologies for sustainable agriculture, nanotechnology is one of the more promising technologies and has a great scope for development in agriculture. Zinc oxide nanoparticles (ZnO NPs) have attracted much attention due to their good properties and can be put into agriculture as nano-fertilizers, nano-growth regulators and nano-pesticides, although much remains to be explored about their mechanisms. Here, we review the literature on the interaction of ZnO NPs with plants through (i) uptake and transport pathways of ZnO NPs in plants. (ii) The mechanisms involved in improving growth, development and resistance. (iii) their effects on the rhizospheric environment. (iv) The toxic effects and mechanisms in plants. Our major conclusions are as follows: (1) they can be absorbed by the plant through the roots and leaves, with subsequent transformation. (2) moderate application can promote plant growth and mitigate stress, while excessive application can produce toxic effects. (3) the effects of them on the rhizospheric environment cannot be ignored. This study may provide a reference for the safe and effective use of ZnO NPs in agricultural production.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Fertilizantes , Nanopartículas Metálicas/toxicidade , Nanopartículas/toxicidade , Raízes de Plantas/metabolismo , Plantas/metabolismo , Óxido de Zinco/farmacologia
17.
Int J Mol Sci ; 23(12)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35742961

RESUMO

Aluminum (Al) toxicity is an essential factor that adversely limits soybean (Glycine max (L.) Merr.) growth in acid soils. WRKY transcription factors play important roles in soybean responses to abiotic stresses. Here, GmWRKY81 was screened from genes that were differentially expressed under Al treatment in Al-tolerant soybean Baxi10 and Al-sensitive soybean Bendi2. We found that GmWRKY81 was significantly induced by 20 µM AlCl3 and upregulated by AlCl3 treatment for 2 h. In different tissues, the expression of GmWRKY81 was differentially induced. In 0-1 cm root tips, the expression of GmWRKY81 was induced to the highest level. The overexpression of GmWRKY81 in soybean resulted in higher relative root elongation, root weight, depth, root length, volume, number of root tips and peroxidase activity but lower root average diameter, malonaldehyde and H2O2 contents, indicating enhanced Al tolerance. Moreover, RNA-seq identified 205 upregulated and 108 downregulated genes in GmWRKY81 transgenic lines. Fifteen of these genes that were differentially expressed in both AlCl3-treated and GmWRKY81-overexpressing soybean had the W-box element, which can bind to the upstream-conserved WRKY domain. Overall, the combined functional analysis indicates that GmWRKY81 may improve soybean Al tolerance by regulating downstream genes participating in Al3+ transport, organic acid secretion and antioxidant reactions.


Assuntos
Alumínio , Glycine max , Alumínio/metabolismo , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Meristema/metabolismo , Raízes de Plantas/metabolismo , Glycine max/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
BMC Plant Biol ; 22(1): 258, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610574

RESUMO

Ethylene response factor (ERF) transcription factors constitute a subfamily of the AP2/ERF superfamily in plants and play multiple roles in plant growth and development as well as in stress responses. In this study, the GsERF1 gene from the wild soybean BW69 line (an Al-resistant Glycine soja line) was rapidly induced in response to aluminum stress. Quantitative real-time PCR (qRT-PCR) analysis showed that the GsERF1 gene maintained a constitutive expression pattern and was induced in soybean in response to aluminum stress, with increased amounts of transcripts detected in the roots. The putative GsERF1 protein, which contains an AP2 domain, was located in the nucleus and maintained transactivation activity. In addition, under AlCl3 treatment, GsERF1 overexpression increased the relative growth rate of the roots of Arabidopsis and weakened the hematoxylin staining of hairy roots. Ethylene synthesis-related genes such as ACS4, ACS5 and ACS6 were upregulated in GsERF1 transgenic lines compared with the wild type under AlCl3 treatment. Furthermore, the expression levels of stress/ABA-responsive marker genes, including ABI1, ABI2, ABI4, ABI5 and RD29B, in the GsERF1 transgenic lines were affected by AlCl3 treatment, unlike those in the wild type. Taken together, the results indicated that overexpression of GsERF1 may enhance aluminum tolerance of Arabidopsis through an ethylene-mediated pathway and/or ABA signaling pathway, the findings of which lay a foundation for breeding soybean plants tolerant to aluminum stress.


Assuntos
Arabidopsis , Alumínio/metabolismo , Alumínio/toxicidade , Arabidopsis/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Plantas Geneticamente Modificadas/fisiologia , Glycine max/genética , Glycine max/metabolismo , Estresse Fisiológico/genética
19.
Ecotoxicol Environ Saf ; 234: 113405, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35298965

RESUMO

Chromium is considered one of the most severe toxic elements affecting agriculture. Soybean seedlings under chromium stress were treated with glutathione and buthionine sulfoximine. The effects of exogenous glutathione on the physiological effects of two different chromium-resistant soybean seedlings and the expression levels of expression levels related genes were studied. This study tested the seedling weight and SPAD values, detected enzymatic antioxidants (i.e., superoxide dismutase, peroxidase, catalase, catalase, ascorbate peroxidase), and non-enzymatic antioxidants (i.e., glutathione, proline, soluble sugars, and soluble phenols) that attenuate chromium-induced reactive oxygen species, and quantified several genes associated with glutathione-mediated chromium stress. The results showed that exogenous glutathione could improve the physiological adaptability of soybean seedlings by regulating photosynthesis, antioxidant, and related enzyme activities, osmotic system, the compartmentalization of ion chelation, and regulating the transcription level of related genes, thereby increasing the chromium accumulation of soybean seedlings, enhancing the tolerance of chromium stress, and reducing the toxicity of chromium. Overall, the application of glutathione alleviates chromium toxicity in soybeans, and this strategy may be a potential farming option for soybean bioremediation in chromium-contaminated soils.

20.
BMC Genomics ; 23(1): 146, 2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35183125

RESUMO

BACKGROUND: Deciphering the hereditary mechanism of seed iron (Fe) and zinc (Zn) content in soybean is important and sustainable to address the "hidden hunger" that presently affects approximately 2 billion people worldwide. Therefore, in order to detect genomic regions related to soybean seed Fe and Zn content, a recombinant inbred line (RIL) population with 248 lines was assessed in four environments to detect Quantitative Trait Loci (QTLs) related to soybean seed Fe and Zn content. RESULT: Wide variation was found in seed Fe and Zn content in four environments, and genotype, environment, and genotype × environment interactions had significant influences on both the seed Fe and Zn content. A positive correlation was observed between seed Fe content and seed Zn content, and broad-sense heritability (H2) of seed Fe and Zn content were 0.73 and 0.75, respectively. In this study, five QTLs for seed Fe content were detected with 4.57 - 32.71% of phenotypic variation explained (PVE) and logarithm of odds (LOD) scores ranging from 3.60 to 33.79. Five QTLs controlling the seed Zn content were detected, and they individually explained 3.35 to 26.48% of the phenotypic variation, with LOD scores ranging from 3.64 to 20.4. Meanwhile, 409,541 high-quality single-nucleotide variants (SNVs) and 85,102 InDels (except intergenic regions) between two bi-parental lines were identified by whole genome resequencing. A total of 12 candidate genes were reported in one major QTL for seed Fe content and two major QTLs for seed Zn content, with the help of RNA-Seq analysis, gene ontology (GO) enrichment, gene annotation, and bi-parental whole genome sequencing (WGS) data. CONCLUSIONS: Limited studies were performed about microelement of soybean, so these results may play an important role in the biofortification of Fe and Zn and accelerate the development of marker-assisted selection (MAS) for breeding soybeans fortified with iron and zinc.


Assuntos
Glycine max , Locos de Características Quantitativas , Mapeamento Cromossômico/métodos , Humanos , Ferro , Fenótipo , Glycine max/genética , Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA